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Asymptotic Lower Bound for the Relative Disparities
of Truncated-Path-Integral Partition Functions
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Any truncated-path-integral partition function of a nonrelativistic quantum
system in thermodynamic equilibrium��one obtained by means of the Feynman
path-integral-procedure using a finite number of such integrals��is known to
have a value not less than that of the exact one corresponding to it. A rigorous
asymptotic lower bound obtained for the relative disparity in their values��the
difference in their values divided by that of the exact partition function��
confirms asymptotic positive-definiteness of the original upper bound. Values
determined directly for a linear harmonic oscillator agree asymptotically with
values of they bound.
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parity; bound.

1. INTRODUCTION

The path-integral theory by which Feynman provided a novel space-time
version of non-relativistic quantum mechanics(1) readily lent itself to
statistical thermodynamic applications.(2) As a result, it furnished a proce-
dure which has made it possible, in principle, to determine exactly all ther-
modynamic-equilibrium properties of non-relativistic quantum systems
without requiring any eigen-values of their Hamiltonians to do so.

However, an important restriction on the procedure is that infinite
numbers of path integrals must be evaluated for it to yield exact results.(3)

This requirement cannot be met in practice and finite numbers of path
integrals are invariably employed.(4, 5) A prudent suggestion has been made
that the numbers which should be used for precision should be chosen
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empirically to be such that no effective changes in calculated thermo-
dynamic properties would be produced when they are increased.(6) Never-
theless, the truncated path-integral partition functions which then do result
are known to be upper bounds for the exact ones corresponding to
them.(7�10) On the basis of how they have been derived, these bounds
appear to be positive-semidefinite, serving only to rank the partition func-
tions according to their values; their equality is not precluded. But intrinsic
differences which actually do exist in their values turn out to be estimable
from an asymptotic positive-definite lower bound that can be determined
directly for their relative disparities. The display of this result and how it
is obtained provides the motivation for the present paper.

For this purpose, the trace of an appropriately-ordered finite product
of exponential functionals of the kinetic-energy and potential-energy
operators of a non-relativistic quantum system��equivalent to a truncated-
path-integral partition function��is given in Section 2, together with some
of its properties. A rigorous asymptotic lower bound derived in Section 3
for the relative disparity of the truncated-path-integral partition function��
the ratio of its excess value over that of its exact counterpart to the value
of the latter��is expressible as an asymptotic series in the number of path
integrals upon which it depends, the leading term of which proves to be
positive-definite. Calculated values of the leading term for a one-dimen-
sional harmonic oscillator are then compared in Section 4 with corre-
sponding values which have been determined directly for them, (11) with the
result that essential agreement between the two is attained asymptotically.
Some brief discussion concerning possible limitations of the results which
have been obtained is given there.

2. TRUNCATED-PATH-INTEGRAL PARTITION FUNCTIONS

Any system to be considered here is a member of a Gibbsian ensemble
of non-interacting dynamically-identical non-relativistic quantum systems.
It has the time-independent Hamiltonian (in atomic units throughout)

H=T+V (1)

where the kinetic-energy operator of R particles comprising the system is

T# & :
R

k=1

{2
k �2mk (2)

mk being the mass of the k th particle. The potential-energy operator of the
system taken relative to its smallest value, restricted here to be finite (thus
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making it necessary to exclude systems with attractive Coulomb interac-
tions), is

V#V(r1 ,..., rR)�0, all rk

� +�, any |rk | � +� (3)

When in statistical-thermodynamic equilibrium, the system (ensemble)
has the exact partition function (assuming that all traces exist)

Z(;)#Tr[exp(&;H], ;=1�kBT (4)

where kB is Boltzmann's constant and T is the absolute temperature. A repre-
sentative truncated-path-integral partition function corresponding to it is

Z(;; N )#Tr {_exp \&
;V
2N + exp \&

;T
N + exp \&

;V
2N+&

N

= (5)

Pertinent restrictions of exchange-symmetry and�or exchange-antisymmetry
are tacitly supposed to be fulfilled in both. (Because the trace is invariant
to cyclic permutation of the factors and because each factor here is
positive-definite, there are many other operators differing in form which
will yield the same trace.) It has been established(7, 8) that

Z(;; N )�Z(;; M)�Z(;), for 2n=N�M=2m, n, m=0, 1, 2,...

(6)
and

lim
N � �

Z(;; N )#Z(;) (7)

3. ASYMPTOTIC LOWER BOUND FOR PARTITION-FUNCTION
DISPARITIES

To deal with the extent by which the value of a truncated-path-
integral partition function exceeds that of its exact counterpart, we begin
with the operator

P(;; N )#exp \&
;V
2N+ exp \&

;T
N + exp \&

;V
2N+ (8)
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Because of the analyticity of its exponentials we can express it as

P(;; N )

=\ :
�

n=0

(&;�N )n (V�2)n

n ! +\ :
�

n=0

(&;�N )n (T )n

n ! +\ :
�

n=0

(&;�N )n (V�2)n

n ! +
= :

�

n=0

(&;�N )n

n !
Fn(V | T | V ) (9)

where

Fn(V | T | V )# :
p, q, r�0, ( p+q+r=n)

\ n !
p ! q ! r !+\

V
2 +

p

(T )q \V
2 +

r

(10)

the latter series resulting from the straightforward term-by-term multiplica-
tion of the three foregoing series while retaining the indicated order of the
operators and then collecting all resulting terms with the same total power
of (&;�N ). For the first few terms, we get

F0(V | T | V )=1, F1(V | T | V )=(T+V )

F2(V | T | V )=(T+V )2

and

F3(V | T | V )=T 3+ 3
2T 2V+ 3

2VT 2+ 3
2VTV+ 3

4TV 2+ 3
4V 2T+V 3 (11)

As needed, other terms can be obtained from Eq. (10).
Since P(;; N ) is a positive-definite Hermitian operator, we may take

its logarithm and get

[P(;; N )]N=exp(N ln[P(;; N )])

=exp \N ln _ :
�

n=0

(&;�N )n

n !
Fn(V | T | V )&+ (12)

Expanding the logarithm in a power series of the excess of its argument
over unity, we then obtain, as the result of some straightforward manipula-
tion with the aid of Eq. (11),

[P(;; N )]N=exp \N :
�

m=1

(&1)m+1

m \ :
�

n=1

(&;�N )n

n !
Fn(V | T | V )+

m

+
rexp \&;H&

;3

24N 2 [2[H, [T, V]]+[[T, V], V]]+ (13)
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as N � �. Again because of the exponential's analyticity, we can express its
dependence on (;3�24N 2) as a power series in that parameter and obtain
for the truncated-path-integral partition function

Z(;; N )r :
�

n=0

(&;3�24N 2)n

n !

__�n Tr[exp(&;H&*[2[H, [T, V]]+[[T, V], V]])]
�*n &*=0

rTr[exp(&;H )]&(;3�24N 2) Tr[[[T, V], V] exp(&;H )] (14)

so that the disparity from its exact counterpart is

Z(;; M)&Z(;)r&(;3�24N 2) Tr[[[T, V], V] exp(&;H )] (15)

Upon substituting the kinetic-energy operator of Eq. (2), followed by
rearrangement, we finally obtain

lim
N � � \N 2 Z(;; N )&Z(;)

Z(;) +=
;3

24
:
R

k=1

Tr[{kV } {kV exp(&;H )]
mk Tr[exp(&;H )]

(16)

which expresses compactly the asymptotic positive-definiteness anticipated
for the lower bound of the relative disparity of the partition-function. Its
actual value will depend on the system to which it applies.

4. DISCUSSION

In order expose possible limitations of the foregoing theory, we con-
sider a linear harmonic oscillator. This oscillator is a particle of mass m
constrained to linear motion, with the potential-energy operator

V(x)= 1
2m|2x2, &��x�+� (17)

where x is the linear position of the particle and | is its (circular) classical
vibration frequency. For this case, it turns out that

:
R

k=1

Tr[{kV } {kV exp(&;H )]
mk Tr[exp(&;H )]

=
Tr[ |dV�dx| 2 exp(&;H )]

m Tr[exp(&;H )]

=2|2 Tr[V exp(&;H )]
Tr[exp(&;H )]

(18)
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the latter ratio being the equilibrium average of the potential energy of the
particle. By the Virial Theorem, it is equal to half its total energy and thus
has the value

Tr[V exp(&;H )]
Tr[exp(&;H )]

=
|
4

(exp(;|)+1)
(exp(;|)&1)

(19)

so that, asymptotically, the relative-disparity is

Z(;; N )&Z(;)
Z(;)

r
(;3|3�N 2)

48
(exp(;|)+1)
(exp(;|)&1)

(20)

as N � �.
The foregoing values of relative-disparity were determined for the

linear harmonic oscillator dealt with by Schweizer et al., for which several
truncated-path-integral partition functions were determined explicitly.(11)

These values are listed in Table 1, for N�15, and are compared there with
the relative disparities determinable from the values actually obtained by
the authors. It is evident that each pair of values for a given N appears to
approach essential equality as N increases, ultimately conforming to the
values given by Eq. (20). Since this behavior required no ad hoc fitting
whatever to do so, it serves to give good support for the theoretical results
which have been have obtained. In addition, the oscillation frequency and
the temperature pertaining to the example had values for which ;|=20,
corresponding to that of a vibrating H2 -molecule at 300 K or that of a
vibrating I2-molecule at 15 K, both species thereby being essentially in
their vibrational ground-states. It is therefore to be emphasized that the
essential asymptotic agreement which has been found has involved a
system which can be regarded as markedly quantum mechanical, and has
thus provided a rather significant test of the theory:

Although the analysis explicitly required the numbers of path integral
to be half or twice that of others, as in Eq. (6), the values in Table 1 were
not so restricted. It would thus seem that such a restriction actually is not

Table 1. Comparison of Actual Relative Disparities of
Truncated-Path- Integral Partition Functions and Their Boundsa

Number of path integrals, N 15 20 40 75 100

Relative disparity, actual 0.865 0.456 0.106 0.029 0.017
Relative disparity, bound 0.741 0.417 0.104 0.030 0.017

a See text for details.
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necessary. An evident limitation, however, which undoubtedly has made
agreement impossible for the smaller N-values of the example, arises from
the limited expansions of the series which have been employed. Indeed, the
values of the asymptotic bound of the relative disparities turning out to be
smaller than the actual values for smaller N 's suggests that higher order
terms which have been neglected actually may be negative so as to account
for it. This limitation could be eased by determining the operators which
correspond to higher order terms that have been neglected. For the present,
however, this limitation can be mitigated if any estimates involving it were
to be made only when the truncated-path-integral partition functions of
interest have small relative disparities from their exact counterparts.

A final limitation of the theory appears to be the presence of the exact
equilibrium distribution operators in order to evaluate the relative dis-
parities. Inasmuch as having them explicitly would render entirely unne-
cessary any need of the Feynman path-integral procedure, it can be
anticipated that ordinarily such would not be available. However, by
Eq. (13)

:
R

k=1

Tr[{kV } {k V exp(&;H )]
mk Tr[exp(&;H )]

= lim
N � �

:
R

k=1

Tr[{k V } {k V(P(;; N ))N]
mk Tr[(P(;; N ))N]

(21)

so that the various truncated-path-integral densities which arise in deter-
mining the corresponding partition functions make it possible to estimate
the requisite bound without any knowledge of the exact equilibrium dis-
tribution, albeit as approximations to the ultimate ones.
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